
Publications
Conference Papers, Journal Articles, Tutorials, Posters
Centimeter Positioning Accuracy using AI/ML for 6G Applications
This research looks at using AI/ML to achieve centimeter-level user positioning in 6G applications such as the Industrial Internet of Things (IIoT). Initial results show that our AI/ML-based method can estimate user positions with an accuracy of 17 cm in an indoor factory environment. In this proposal, we highlight our approaches and future directions.
Enhancements for 5G NR PRACH Reception: An AI/ML Approach
Random Access is an important step in enabling the initial attachment of a User Equipment (UE) to a Base Station (gNB). The UE identifies itself by embedding a Preamble Index (RAPID) in the phase rotation of a known base sequence, which it transmits on the Physical Random Access Channel (PRACH). The signal on the PRACH also enables the estimation of propagation delay, often known as Timing Advance (TA), which is induced by virtue of the UE's position. Traditional receivers estimate the RAPID and TA using correlation-based techniques. This paper presents an alternative receiver approach that uses AI/ML models, wherein two neural networks are proposed, one for the RAPID and one for the TA. Different from other works, these two models can run in parallel as opposed to sequentially. Experiments with both simulated data and over-the-air hardware captures highlight the improved performance of the proposed AI/ML-based techniques compared to conventional correlation methods.
5G cellular systems depend on the timely exchange of feedback control information between the user equipment and the base station. Proper decoding of this control information is necessary to set up and sustain high throughput radio links. This paper makes the first attempt at using Machine Learning techniques to improve the decoding performance of the Physical Uplink Control Channel Format 0. We use fully connected neural networks to classify the received samples based on the uplink control information content embedded within them. The trained neural network, tested on real-time wireless captures, shows significant improvement in accuracy over conventional DFT-based decoders, even at low SNR. The obtained accuracy results also demonstrate conformance with 3GPP requirements.